VDFUnit – Writing unit tests
[image: ]What to test where

Unit tests
Test only what the API exposes
Give it good input
Give it bad input
Each test class
Has many tests
But they must be independent
Each test
Tests one method
Set up, test, tear down, repeat
Touches one class (the class you’re testing)
If the method involves another class, then fake the other class, otherwise you’re doing an integration test
Integration tests
Test code + database
My code + your code
First unit test your pieces with fakes (stubs/mocks)
Then test them together
Why? With integration tests only you cannot definitely say “The problem is in your code” or “The problem is in the database”
System tests
Tests that everything works together
Testing the client requires other tools, but hook into the global tests
Acceptance testing
High level
Written before all others
Based on “User Stories”
Saves you writing code the client doesn’t want
Implies what unit tests are needed
What to test
Mission critical = test or die
Complex = test or suffer
Non-trivial = test or waste time
Trivial = waste time (don’t test simple getters and setters)


When to test
The sooner the better
Before writing the code?
Just after?
While writing the code?
Before fixing the bug (to confirm it’s what you think, to know when you’re done fixing, and guarantee you’ll never see the bug again)
Getting everyone on the same page
Run all tests automatically at given intervals (i.e. at check-in)
Hook the build system (continuous integration server, anyone?) into it
Naming conventions
Class: For each class, create at least one class with the name ClassNameTests.
Method: For each method, create at least one test with the following name: MethodName_StateUnderTest_ExpectedBehavior
Good Unit Tests
· FAST (Many hundreds or thousands per second)
· Isolate (Failure reasons become obsolete)
· Repeatable (run repeatedly in any order, any time)
· Self-validating (no manual evaluation required. Simply pass/fail)
· Timely (written before the code)
Professional – the test code is as important as your production code, and needs to be well maintained, well designed, readable, not duplicated.

Information stolen from:
Write Maintainable Unit Tests That Will Save You Time And Tears
FIRST properties of unit tests
http://www.masukomi.org/talks/unit_testing_talk_2/index.xul?data=slide_data.txt#page1

image1.png

